

Квантовое молекулярно-динамическое моделирование теплофизических свойств металлов ядерной энергетики: от плавления до критической точки

Quantum molecular dynamics study of thermophysical properties of nuclear energy metals: from melting to the critical point

<u>Д. В. Минаков</u>, М. А. Парамонов, В. Б. Фокин, И.С. Гальцов, Г.С. Демьянов, П. Р. Левашов

Объединенный институт высоких температур РАН, Москва

Мотивация

- Несоответствие между экспериментальными данными и теоретическими оценками
- Отсутствие высокотемпературных данных
- Неопределенность критических параметров

Совместное экспериментально-теоретическое исследование Zr, Ni, и Hf поддержано РНФ: «Исследование высокотемпературных свойств материалов атомной энергетики: первопринципный расчет и эксперимент" (2020–2025). Квантовая молекулярная динамика (КМД)

- Наиболее популярный метод для неупорядоченных вырожденных сильновзаимодействующих систем
- Адиабатическое приближение
- Электроны квантовые, описываются в рамках теории функционала плотности в кубической

- об взаимодействия.
- PAW потенциал
- Точка Балдереши, сетка до 2х2х2 использовались, чтобы достичь сходимости
- QMD моделирование до 250 атомов, NVT ансамбль

G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993); 49, 14251 (1994).
G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).

••••

КМД моделирование вдоль изохор и изотерм

В ходе расчетов строится сетка изохор и изотерм, которые изображены на Р-Т, Р-Е, и Р-р диаграммах.

Сгущение изохор позволяет оценить расположение критической области, а метод последовательного приближения к критической изотерме позволяет определить стационарную точку перегиба критическую точку.

Paramonov M.A., Minakov D.V., Dorovatovky A.V. et al. PRB 110, 184204 (2024)

Критическая изобара Zr

Секция 4, 22 мая 15-00: А.В. Дороватовский «Экспериментальное исследование теплофизических свойств циркония и гафния методом импульсного нагрева электрическим током»

Paramonov M.A., Minakov D.V., Dorovatovky A.V. et al. PRB 110, 184204 (2024)

Энтальпия Zr

Отмечается хорошее согласие между результатами расчетов и экспериментальных измерений, выполненных в рамках совместного исследования. Энтальпия плавления, предсказанная КМД, составляет 14 кДж/моль, а экспериментальное значение - 14,6 кДж/моль.

Расчет скорости звука для жидкого Zr

$$\left(\frac{\partial \rho}{\partial T}\right)_P = -\frac{\gamma \rho C_P}{c_s^2}$$

Экспериментальные данные о скорости звука в жидком Zr отсутствуют. Единственная точка - оценка Блэрсом скорости звука в расплаве, полученная на основе анализа данных для других металлов. Эта оценка хорошо согласуется с нашими результатами.

Paramonov M.A., Minakov D.V., Dorovatovky A.V. et al. PRB 110, 184204 (2024)

Удельное сопротивление Zr вдоль критической изобары

*D.V.Knyazev and P.R.Levashov, Comput. Mater. Sci. **79**, 817–829 (2013) ** D.V.Knyazev and P.R.Levashov, Contrib. to Plasma Phys. **59**, 345–353 (2019)

Удельное сопротивление Zr вдоль критической изобары

Расчет КМД и формула Кубо-Гринвуда позволяет вычислить поведение удельного электрического сопротивления до критической точки.

Нормальная спектральная излучательная способность Zr вдоль критической изобары

Нормальная спектральная излучательная способность при 650 нм практически постоянна до 4 кК, а затем значительно растет (на 50%) по мере приближения к критической точке, что необходимо учитывать в высокотемпературных экспериментах.

Paramonov M.A., Minakov D.V., Dorovatovky A.V. et al. PRB 110, 184204 (2024)

10

Критическая изобара Ni

Galtsov I.S., Fokin V.B., Dorovatovky A.V. et al. JAP 136, 145104 (2024)

Энтальпия никеля

Отмечается хорошее согласие между результатами расчетов и экспериментальных измерений, выполненных в рамках совместного исследования. Учет спиновой поляризации улучшает согласие. Энтальпия плавления, предсказанная КМД, составляет 16,4 кДж/моль, а экспериментальное значение - 17,6 кДж/моль.

Скорость звука в жидком Ni

Отличное согласие между результатами расчетов и имеющимися экспериментальными данными по скорости звука в жидком никеле.

Galtsov I.S., Fokin V.B., Dorovatovky A.V. et al. JAP 136, 145104 (2024)

Нормальная спектральная излучательная способность Ni

Наблюдается очень хорошее согласие между результатами расчетов и имеющимися экспериментальными данными для жидкого Ni. Наши расчеты предсказывают почти постоянную нормальную спектральную излучательную способность для длин волн в диапазоне 650-900 нм в интервале температур от плавления до 7 кК. При более высокой температуре наблюдается сильный рост.

Galtsov I.S., Fokin V.B., Dorovatovky A.V. et al. JAP 136, 145104 (2024)

оценке Мартынюка (1984)

Критическая изобара гафния

Наклон рассчитанной изобары находится в согласии с экспериментальными данными.

Энтальпия гафния

КМД расчет предсказывает более низкую энтальпию в жидкости, чем наблюдается в экспериментах. При этом значение изобарной теплоемкости находится в согласии с экспериментальными измерениями, выполненными в рамках совместного исследования. Энтальпия плавления, предсказанная КМД, составляет 14,6 кДж/моль, а экспериментальное значение – 16 кДж/моль.

Справочные значения ИВТАНТЕРМО и NIST – 26 и 29.3 кДж/моль соответственно.

Удельное сопротивление Hf вдоль критической изобары

Наклоны рассчитанного и измеренного удельного электросопротивления находятся в согласии. Как и в случае Zr расчет показывает недооценку примерно на 15 μΩ·cm.

Нормальная спектральная излучательная способность Hf

Наблюдается хорошее согласие между результатами расчетов и имеющимися экспериментальными данными для жидкого Hf.

Экспериментальные образцы демонстрируют запаздывающее падение излучательной способности в жидком Hf после плавления, что также подтверждается в эксперименте Дороватовского (2025, OИBT PAH).

Заключение

- 1. Проведены расчеты теплофизических свойств Zr, Ni и Hf в широком диапазоне плотностей и температур.
- Показано, что квантовая молекулярная динамика (КМД) успешно описывает экспериментальные данные по изобарному расширению; такие расчеты выполнены впервые.
- Представлены первые первопринципные оценки критической точки для Zr, Ni и Hf.
- 4. Реконструированы зависимости энтальпии и других важных теплофизических свойств от температуры вдоль критической изобары.
- 5. Расчет высокотемпературных оптических свойств показывает хорошее согласие с экспериментом и позволяет корректировать пирометрические измерения в высокотемпературной области.
- 6. Совместное расчетно-экспериментальное исследование значительно повышает достоверность получаемых теплофизических данных.

•

Расчет скорости звука для жидкого Hf

Экспериментальные данные о скорости звука в жидком Hf отсутствуют. Единственная точка - оценка Блэрсом скорости звука в расплаве, полученная на основе анализа данных для других металлов. Эта оценка хорошо согласуется с нашими результатами.

$$\left(\frac{\partial \rho}{\partial T}\right)_P = -\frac{\gamma \rho C_P}{c_s^2}$$

Удельное сопротивление никеля

Скачок энтальпии и объема при плавлении для Hf

Clausius–Clapeyron relation provides 60 K/GPa at P = 0

electrostatic levitation experiments

Minakov D.V. et al. PRB **106**, 214105 (2022)

Enthalpy and volume jump at melting

Minakov D.V. et al. JAP 132, 065102 (2022)

Энтальпия гафния в эксперименте

•

